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1. Introduction 

Analytical models for hardware failure have been extensively investigated in the literature 

along with performability issues [l]. Although the time for dif€erent components to fail is usually 

assumed to be exponentially distributed, time-dependent failure rates and graceful degradation 

have been considered 121. Automatic availability evaluation, assuming a Markov models, is dis- 

cussed in [31. A jobitask flow based model is described in [41. where failure occurrence is assumed 

to be a linear function of the service requests from a jobltask flow. As shown in [SI. this linear 

assumption may result in underestimating the effect of the workload, especially when the load is 

high. A summary of research in software reliability growth models is discussed in [6]; run-time 

software reliability modeling is discussed in [7]. 

Although many authors have addressed the modeling issue and have significantly advanced 

the state of the art, none have addressed the issue of how to identify the model structure. Further, 

very few of either the hardware or the software models have been validated with real data. Excep- 

tions are the joint hardwarelsoftware model discussed in [SI and, a measurement-based model of 

workload dependent failures discussed in [5]. Both. however, describe only the external behavior 

of the system and thus do not provide insight into component-level behavior. 

In this paper w e  build a semi-Markov model to describe the resourctusagderror/recovery 

process in a large mainframe system. The model is based on one year of low-level error and per- 

formance data collected on a production IBM 3081 system running under the M V S  operating sys- 

tem. The 3081 system consisted of dual processors with two multiplexed channel sets. Both the 

normal and erroneous behavior of the system arc modeled. A reward function, based on the service 

rate and the error rate in each state. is defined in order to estimate the performability of the sys- 

tem, and to depict the cost of different error types and recovery procedures. Two key contribu- 

tions of this paper are: 

(1) A method for identifying a model-structure for the resource-usage/error/recovery process is 
introduced and the resulting model is validated against real data. 
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(2) It is shown that a semi-Markov model may better represent system behavior as opposed to a 
Markov model. 

2 Resource Usage Characterization 

In this section we identify a state-transition model to describe the variation in system 

activity. System activity was characterized by measuring a number of resource usage parameters. 

A statistical clustering technique was then employed to identify a small n k k r  of representative 

states. 

The resource usage data were collected by sampling, at predetermined intervals, a number of 

resource usage meters, using the IBM MVS/370 system Resource Measurement Facility (RMF). A 

sampletime of 500 milliseconds was used in this study. Four different resource usage measures 

were used: 

CPU 
CHB 

- fraction of the measured interval for which the CPU is executing instructions. 
- fraction of the measured interval for which the channel was busy and the CPU was in 
the wait state (this parameter is commonly used to measure the degree of contention in 
a system) 
- number of successful Start VO and Remme VO instructions issued to the channel 
- number of requests serviced on the direct access storage devices 

SI0 
DASD 

At any interval of time the measured workload is represented by a point in a 4-dimensional space, 

(CPU. CHB. SIO, DASD). Statistical cluster analysis is used to divide the workload into similar 

classes according to a predefined criterion. This allows us to concisely describe the dynamics of 

system behavior and extract a structure that already exists in the workload data.' 

Each cluster (defined by its centroid) is then used to depict a system state and. a state 

transition diagram (consisting of inter-cluster transition probabilities and cluster sojourn times) is 

developed. A &-means clustering algorithm 1101 is used for cluster analysis. The algorithm parti- 

tions an N-dimensional population into k sets on the basis of a sample. The k non-empty clusters 

sought, C,,C ,..... C, , are such that the s u m  of the squares of the Euclidean distances of the cluster 

, where Z, is the centroid of cluster members from their centroids. 2 2 I I xi -X, I I *, is mimmmd 
IC . .  

j = 1  X p c ,  

'Similar clustering techniques are also used for workload characterization in 191. 
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of CHB 
0.1072 
0.5525 
0.2801 
0.1637 
0.3819 
0.1287 
0.0848 
0.0168 

Two types of workload clusters were formed. In the first case CPU and CHB were selected to 

be the workload variables. This combination was found to best describe the CPU-bound load 

(nearly 6070 of the observations have a CPU usage greater than 0.72). In the second case the clus- 

ters were formed considering SI0 and DASD as the workload variables. This combination was 

found to best describe the I/O workload. In this paper, only the results for CPU-bound load clus- 

ters are presented. Details of I/O activity can be found in [ll]. Table 1 shows the results of the 

clustering operation. The table shows that about 36% of the time the CPU was heavily loaded 

(0.96) and almost 76% of the time the CPU load was above 0.5. Since the measured system con- 

sisted of two-processors. w e  may say that 762 of the time at least one of the processors is busy. A 

state-transition diagram of CPU-bound load activity is shown in Figure 1. Note that a null state, 

W,. has been incorporated to represent the state of the system during the non-measured period. 

The time spent in the null state was assumed to be zero. The transition probability from state i to 

of CPU of CHB 
0.0462 0.0436 
0.0433 0.0669 
0.0647 0.0755 
0.0550 0.0459 
0.0365 ' 0.1923 
0.0560 0.0511 
0.0576 0.0301 
0.0362 0.0143 

state j , p i j  , was estimated from the measured data using: 

observed no. of transitions from state i to state i 
r i j  ~ 

observed no. of transitions from state i 

Cluster II %of I Mean 

0.50 
2.73 
12.41 
0.74 
17.12 
'22.58 

0.1126 
0.1547 
0.3105 
0.3639 
0.5416 
0.7207 

W; 11 36.48 1 0.9612 
R" of CPU = 0.9724 
R2 of CHB - 0.8095 
werall R2 - 0.9604 

R' : the square of correlation coeficient 

Table 1. Characteristics of CPU-bound workload clusters 
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'1 
1 
1 to W, from W, 

to w, 
0.162 from W, 

\ 0.20 
0.037 o p  

fromW, tow, from W, 

Figure 1. State-transition diagram of CPU-bound load 

In the next section the characterization of the errors and the recovery process is discussed. 

The appropriate error and recovery states are idmtaed for subsequent use in developing an ovetall 

model. 

3. Error and Recovery charsctmza tion 

The IBM system has built-in error detection facilities and there are many provisions for 

hardware and software initiated recovery through retry and redundancy. The error and recovery 

data are automatically logged by the operating system as the mors occur. On the Occurrence of an 

error the operating system creates a timestamped record describing the error. the state of the 

machine at the time of the error and, the result of the hardware andor  software attempts to 

recover from the error. Details of this logging mechanism are described in [12]. Due to the manner 

in which errors are detected and reported in a computer system, it is possible that a single fault 

may manifest itself as more than one error. depending on the activity at the time of the error. The 
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different manifestations may not all be identical [13]. The system recovery usually treats these 

errors as isolated incidents. Thus, the raw data can be biased by error records relating to the same 

problem. In order to address this problem, two levels of data reduction were performed. First. a 

coalescing algorithm described in [51 was used to analyze the data and merge observations which 

occur in rapid succession and relate to the same problem. Next, a reduction technique described in 

[13] to automatically group records most likely to have a common cause Was used. By using these 

two methods, the errors were classified into five different classes. These classes are called error 

events since they may contain more than one error and are explained below: 

Freq U c p c g  Percent 
2 0.04 

1 
I 
I 

CPU : 

C": 
DASD : 

SWE : 

MULT : 

Errors which affect the normal operation of the CPU; may originate in the CPU, in the 
main memory, or in a channel 
Channel errors (the great majority are recovered) 
Disk errors, recoverable (by data correction. hardware instruction retry or software 
instruction retry) and non-recoverable disk 
Software incidents due to invalid supervisor calls, program checks and other software 
exception conditions 
Multiple errors affecting more than one type of component (Le.. involving more than 
one of the above) 

8 
I 
I 
1 

Table 2 lists the frequencies of dserent types of errors. Notice that about 17% of errors are 

classified as multiple errors (MULT). A MULT error is mostly due to a single cause but the fault 

has non-identical manifestations. provoked by different types of system activity. Since the man- 

ifestations are non-identical, recovery may be complex and hence can (as will be seen later) impose 

considerable overhead on the system. 

17.33 
SWE 36.07 
DASD 2364 44.33 
total 5332 100.00 

~ ~~ ~ ~~~ ~~~ 

Table 2. Frequency of errors 
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successful 

successful S - Y fai ed 

successful 

successful 

W 
Figure 2. Flow chart of recovery processes 

The recovery procedures were divided into four categories based on recovery cost. which was 

measured in terms of the system overhead required to handle an error. The lowest level (hardware 

recovery), involves the use of an error correction code (Ea) or hardware instruction retry and has 

minimal overhead. If hardware recovery is not possible (or unsuccessful). software controlled 

recovery is invoked. This could be simple. e.g.. krminating the current program or task in control. 

or complex. e.g.. invoking specially designed recovery routinds) to handle the problem. The third 

level, alternative (ALT), involves transferring the tasks to functioning processor(s) when one of 

the processors experiences an un-recoverable error. If no on-line recovery is possible, the system is 

brought down for off-line (OFFL) repair. Figure 2 shows a flow chart of the recovery process. The 

time spent in each recovery state was taken to be constant. since each recdvery type except OFFL 

requires almost constant overhead? 

Hardware recovery involves hardware instruction retry or ECC correction. The maximum number of retries is 
predetermined. Each CPU has a %-nanosecond machine cycle time and the disk seek time is about 25 milliseconds. We 
estimate a worst case hardware recovery cost of 0.5 seconds, Le. incorporating twenty VO retries: ten through the original 
VO path and another ten through an alternative I/O path if the alternative is available. This, of course, over estimates the 
cost of hardware retry used for the CPU errors. Similarly, the worst-case software recovery time was atimated to be 1 
second. The U T  state was not evaluated since it did not occur in the &ta. For OFFL the time was calculated to be 1 hour 
based on our experience and through discussion with maintenance engineers. 
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4. Resource-Usage/Error/Recovery Model 

In this section we combine the separate workload, error and recovery models developed into a 

single model shown in Figure 3. The null state W, is not shown in this diagram. The model has 

three different classes of states: normal operation states (S,). error states (S,). and recovery states 

(S,). Under normal conditions, the system makes transitions from one workload state to another. 

The occurrence of an error results in a transition to one of the error stat&. The system then goes 

into one or more recovery modes after which, with a high probability, it returns to one of the 

"good" workload stad. The state transition diagram shows that newly 98.3% of hardware 

recovery requests and 99.7% of software recovery requests are successful. Thus the error 

Figure 3. State-transition diagram of resourccusage/error/recovery model 

Note that the transition probabilities from w, to w, arc diaerent from those in hure 1 where m o r  states were not 
considered in computing the transition probabilities. 
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detection. fault isolation and on-line recovery mechanisms allow the measured system to handle an 

error efficiently and effectively. In less than 1% of the cases is the system not able to recover. 

One state which needs further elaboration is the MULT state. Recall that a MULT state 

denotes a multiple error event affecting more than one component type. Figure 4 shows the state- 

transition diagram of a MULT error event, Le.. the transition diagram given a MULT error. The 

model quantifies the interactions between the different components in a multiple error occurrence. 

From the diagram. it is seen that in about 65% of the cases a multiple error starts as a software 

error @WE) and in 32% of the cases it starts as a disk error (DASD). Given that a disk error has 

occurred. there is nearly a 3wo chance that a software error will follow. It is a h  interesting to 

note that there is a 64% chance that one software error will be followed by another different 

software error. 

entry to 
MULT 

.32 

-29 

exit from 
MULT 

Figure 4. Statetransition diagram of a given multiple error (MULT) 
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Mean 
State waiting time 
CPU * 

CHAN 5.08 
SWE 41.35 

DASD 120.86 
MULT 293.28 

I 

~ 
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waiting time 
1263.71 

4.1. Distributions for Workload and Error States 

deviation 
1384.20 

Table 3 shows the characteristics of both the workload and error states in terms of their wait- 

289.65 
698.79 
1203.05 
613.74 
1380.86 
1071.31 
1612.72 

ing times. An examination of the mean and standard deviation of the waiting times indicates that 

1.19 
913.30 
1130.28 
421.73 
1588.76 
1004.46 
2576.35 

not all waiting times are simple exponentials. This is particularly pronounced for the error states. 

w5 
w7 

WR 
w6 

Workload 
Mean IStandard 

I Error 
Standard 
deviation 

* 
18.31 
103.35 
223.89 
262.84 

rtatbticall~ insigniacant 

Table 3. Characteristics of waiting time (seconds) 
in workload and error states 

-0.00103t )00939e 

0-0 I _ _ _  
0 120 140 

(a). Waiting time density for W, 

I 

(b). Holding time density from W, to SWE state 

Figure 5. Waiting and holding time densities 
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Figure 5(a) and 5(b) shows the densities of waiting time for W, state and also the specific holding 

time to the S W E  error state. The waiting time for state i is the time that the process spends in 

state i before making a transition to any other state. The holding time for a transition from state i 

to state j is the time that the process spends in state i before making a transition to state j [141. 

This is the same as the distribution of a one-step transition from state i to j . The distributions in 

figure 5 are fitted to phase-type exponential density functions [15] and, tested by using the 

Kolmogorov-Smirnov test at a 0.01 significance level. 

4.2 Error Duration Distsibutions 

Recall that an error event can involve more than one error and since errors frequently occur 

in bursts. During an error burst the system goes into an error -> recovery cycle until the error 

condition disappears'. In such cases we measure the duration of an error event as the time 

difference between the first detected error and the last detected error. caused by the same event. 

The duration of an error event can be used to measure the severity of the error. Since each 

recovery type takes approximately a constant amount of time. the loss of work can be approxi- 

mated by the error rate in this period. In section 6. we use this information to build a reward 

model for the system. Figure 6 shows examples of error duration densities for two different types 

of errors, SWE and MULT. 

In summary, we have developed a statetransition model which describes the normal and 

error behavior of the system. A key characteristic of the model is that the waiting time in some of 

the workload states and in most error states cannot be modeled as simple exponentials. Further- 

more, the holding times from a given workload state to different error states arc dependent on the 

destinations. Thus, the overall system is modeled as a complex irreducible semi-Markov process. 

~~~ ~- 

9 h i s  is typical of many systems (e+ sa [SI >. The -1 recovery usually occurs beuw the conditions which 
triggered the error disappear due to change in system activity. 
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mat ion  &I 0 5 

(a). Waiting time density for SWE 

1 -0.003817~ 4.030109u - e  
0.10 

f ( t )  = 0.004371 (e A 

0 
-tion cpti(k> 5 15 

(b). Waiting time density for MULT 

Figure 6. Error duration densities 

5. Model Behavior Analysis 

Now that we have an overall model, we show the usage of this model to predict key system 

characteristics. The mean time between dserent types of errors is evaluated along with model 

characteristics. such as the occupancy probabilities of key normal and error states. 

5.1. General Characteristics 

By solving the semi-Markov model. we find that the modeled system made a transition every 

9 minutes and 8 seconds. on average. In comparing this with the mean time between errors 

(MTBE) listed in Table 4. it is clear that most often the transitions are from one normal state to 

another. The table also shows that a DASD error was detected almost every 52 minutes (0.87 

hours) while a software error was detected every 1 hour and 45 minutes. Most of the DASD errors 

(95%) were recovered through hardware recovery (Le.. hardware instruction retry or ECC). thus 

resulting in negligible overhead. Table 4 also lists the mean recurrence time for recovery states. 
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Error states 
mu CHAN SWE DASD MILT 
- 26.88 1.75 0.87 4.62 

I 
I 
I Recovery states 

HWR SWR ALT O m  
0.62 2.57 - 651.37 

I 
1 
1 
I 
I 

1 
1 
I 
I 
1 

Table 4. Mean recurrence time (hours) of error and recovery states 

Thus, the on-line hardware recovery routine is invoked once every 0.62 hours, while the software 

recovery occurs every 2.57 hours. By using an estimated time for each hardware recovery and 

comparing the results with the recovery overhead, we estimate that the cost of hardware recovery 

is only 0.02% of total computation time. The mean recurrence time of the alternative recovery 

routine was not estimated, due to lack of data, i.e., this event seldom occurred. 

5.2 Summary Model Probabilitiea 

Since the process is modeled as an irreducible semi-Markov process. we can evaluate the fol- 

lowing steady state parameters [14k 

(1) occupancy probability (Qj - the probability that the process occupies state j , 
(2) conditional entrance probability ( w j )  - given that the process is now making a transition. the 

probability that the transition is to state j 
(3) entrance rate (ej ) - the rate at which the process enters state j at any time 

, where 7 is the mean time between 
=I 

instance (ej = - 
transitions) 
- mean time between successive entries into state j 

F 

(4) mean recurrence time (8, 

The model characteristics are summarized in Table 5. A dashed line in this table indicates a 

negligible value (statistically insignificant). Table 5(a) shows the normal system behavior. For 

example, given that a transition occurs the system is most likely to go to states W, or W,. This is 

also reflected in the respective entrance rates and occupancy probabilities for the mentioned states. 

From the occupancy probabilities (Q) we see that almost 34% of the time the CPU load is as high as 

0.96 (W,); 392 of the time the CPU is moderately loaded (W, + W,). Table 5(b) shows the error 

behavior of the system. The table shows that about 3Wo of the transitions are to an error state 

(obtained by summing all the w's for all the error states). The DASD errors have the highest 
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Mwurt  

4 0  

7 
e 
GU 

Normal state 

w, wl w2 w3 w4 ws w6 w 7  w 8  

0.0625 0.0008 0.0136 0.1258 0.0054 0.1639 0.2255 0.3398 
0.0257 0.0264 0.0014 0.0104 0.0559 0.0047 0.0635 0.1125 0.1127 
0.oooOs o.oooo5 - o.ooo02 0.0001 o.oooo1 0.00012 0.00021 0.00021 
5.78 5.62 102.56 14.32 2.65 31.38 233 1.32 1.32 

I I Error state Recovery 

Table 5. Summary of model characteristics 

Measure 

Q 
P 
s 

e 
e -u 

entrance probability. For the data shown in the table it can be estimated that an error is detected, 

CPU CHAN SWE DASD MULT HWR SWR ALT OFFL 

- O.oooO5 0.0066 0.0383 0.0179 0.00022 0.00011 - - 
- 0.0055 0.0850 0.1692 0.0322 0.2379 0.0572 - 0.00023 

- O.oooO1 0.00016 0.00032 0.00006 O.ooo45 O.OOO11 - - 
- 26.88 1.75 0.87 4.62 0.62 2.57 - 65137 

on the average, every 30 minutes. Of course, over 98% of these errors incur negligible overhead. 

An interesting characteristic of the multiple errors is also seen in Table 5(b). Although the 

entrance probability of a MULT error is lower than that for SWE, its occupancy probability is 

higher. This is due to the fact that a MULT error event has a longer mean waiting time as compared 

to SWE error events (293 seconds versus 41 seconds). 

53. Model Validation 

Even though our model is developed from real data, it needs to be validated since the model 

identihition process, e.&. the workload clustering. allow us to only approximate the real system 

behavior. In order to evaluate the validity of the model, three measures evaluated via the model 

were compared with direct calculations from the actual data. Table 6 shows the comparison of the 

occupancy probabilities for key normal states (occupancy probability greater than 0.1) and for one 
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key error state (DASD).S The table also shows the comparison for the mean recurrence time (@ of 

the SWE error event and for its standard deviation (Std). It can be seen that all the predicted 

values are around 3 percent or less. indicating that the proposed semi-Markov model is an accurate 

estimator of the real system behavior. This also provides support for the model structure 

identification method employed in this paper. 

SA. Markov V e r a  Semi-Markov 

This section investigates the significance of using a semi-Markov model to describe the overall 

resource-usage/error/recovery process. It has been argued that since errors only occur infrequently 

(Le.. X is small), a Markov model may well approximate the real behavior. Clearly, if only the 

first moments. e.g.. MTBE. are of interest the Markov model provides adequate information. If the 

distributions (e.g.. the time to error distribution) or higher moments are of interest the Markov 

model may be inadequate. Thus. although our evidence shows that the semi-Markov process is a 

better model, Le.. more closely approximates the data from the measured system, it is reasonable to 

ask what deviations occur if a Markov process is assumed. In order to answer this question we use 

a Markov model to describe! our system and compare the results with those! obtained through the 

more realistic semi-Markov model. 

i 

W, W, W, W, DASD SWE S m  
Model 0.1258 0.1639 0.2255 0.3398 0.0383 1.75 2.18 
Actual 11 0.1259 I 0.1634 I 0.2311 I 0.3452 I 0.0386 I 1.72 I 2.11 

F II I I I I I 1 - I- 11 O.OOO8 I 0.0031 I 0.0242 I 0.0156 I 0.0156 I 0.022 I 0.033 I 
€ : the absolute error. I Model - Actual I 

Table 6. Comparison of (0, 6 and standard deviation 

The 'Actual' values are calculated from observed data. For example: 
total time that the system was obsmed to be in state i 

length of the observation period 
9, = 
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semi-Markov 

We compared the two by calculating two steady state parameters. The fist is the complemen- 

tary distribution of the time to error (referred to as R(t)) for different error types. The second is 

the standard deviation of R(t). The results for the SWE state are shown in Table 7. It is clear that 

the Markov model over estimates the R(t) in the early life (for low time to error probabilities) and 

under estimates R(t) for high time to error probabilities. The standard deviation is also consider- 

able under estimated by the Markov model thus casting doubts on the validity of using MTBE esti- 

mates themselves. 

R(t) Std ( m i d  

0.99 0.61 0.44 0.32 0.24 0.18 0.14 0.10 28.63 

In summary. our measurements show that using a Markov model is optimistic in the short 

run and pessimistic in the long run. The underestimation of the standard deviation of R(t) is also a 

serious problem because it calls into question the representativeness of the MTBE estimates. 

Markov 1.00 0.71 0.50 0.35 0.25 0.17 0.12 0.09 25.13 

Time(mins) 0 7.5 15.0 22.5 30.0 37.5 45.0 52.5 
I 

6. Performability halysis 

In this section we use the workload/error/recovery model to evaluate the performability of 

the system. Reward functions are used to depict the performance degradation due to errors and 

also due to different types of recovery procedures. Since the recovery overhead for each recovery 

state in the modeled system is approximately constant, the total recovery overhead for each error 

event and thus the reward depends on the error rate during that event. Thus, higher the error rate 

during an error event. the higher is the recovery overhead and. hence lower the reward. On this 

basis we define a reward the reward rate. ri (per unit time) for each state of the model as follows: 

Table 7. Comparison between Markov and semi-Markov 
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ri = 

Si 
if i E SNUSE 

si + ei 

reward is given for each unit of time when the process stays in the good states S,. The penalty 

x ( t )  = 

paid depends on the number of errors generated by an error event. With an increasing number of 

'1 processisinstatei e S N  

process is in state i E S, ti 

errors the penalty per unit time increases, and accordingly, the reward rate decreases. Zero reward 

is assigned to recovery states. Based on this proposal, reward rates for the error states are as 

shown in Table 8. 

The reward rate of the modeled system at time t is a random variable X ( t  ), which is defined 

as 

[16]: 

t 

where pi (t ) is the probability of being in state i at time t . In order to evaluate pi (t ) and hence 

other measures. we convert the semi-Markov process into a Markov process using the method of 

stages [lS, 171. The state probability vector P*(t) = (....pi(t),...) of the Markov process can be 

lstate II DASD I SWE I C" I M U L T I  
I ri 11 0.5708 I 0.2736 I 0.9946 I 0.2777 I 

Table 8. Reward rates for error states 
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derived from P * ( t )  = P'(0) eQr , where P*(O) = (1.0 ..... 0) and Q is transition rate matrix of the 

Markov process [14]. 

In order to study the performance degradation due to dserent types of errors, the irreducible 

semi-Markov process was transformed by considering the OFFL (off-line repair) state as the 

absorbing state. The expected reward calculated with this assumption indeed reflects the true per- 

formability until system failure. Next. for evaluating the impact of different error events we first 

observe that often these events have significant error duration time (e.g.. MULT state has an mean 

error duration of 5 minutes with a standard deviation of 4 minutes). Since the majority of jobs 

last less than a few minutes, as far as a user program is concerned. an entry into an long duration 

error state is similar to entering an absorption state with ri >O. Thus. the impact of the MULT can 

be evaluated by making it into an absorption state with ri >O. A similar analysis can be performed 

for other error states6 

In our analysis, we first make the OFFL state the absorbing state. This gives the expected per- 

formance until an off-line failure. Then we evaluate three other cases. 

a) OFFLcase(0FFL). 
b) MULT and O F n  case (MULT). 
c) SWE. MULT and OFFL case (SWE). and 
d) DASD, MULT and OFFL case (D-4SD). 

Case (a) gives the overall performability of the system assuming that O F n  (off-line repair) is the 

absorbing state. Le.. the impact of all other error events are taken into account. This gives both the 

transient and steady state performability of the system. Next we assume in case (b) that both 

MULT and OFFL are absorbing. The dBerence between (a) and (b) approximates the expected per- 

formance loss due to possible entry into a long duration MULT state. Similarly. the difference 

between (a) and (c) provides an estimate of loss of performance due to entry into an SWE state. In 

the long term. of course, each will reach a steady state value. The above analyses were performed 

6An alternative approach, the performance loss (PL) based on the steady state occupancy probabilities, was suggested 
O0,). where V(,,) b the probability of visiting a recovery state f after an by one of the referees. PL, = @[(l-r,) + 

error state i f  
rdp P 
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I 
1 

I 
I 

on the resulting Markov reward model of the system using SHARPE (the Symbolic Hierarchical 

Automated Reliability and Performance Evaluator)' developed at Duke University: 

The curves of Figure 7 show the expected reward rate at time t , E[X(t 11. for these four cases. 

The evaluations of the cumulative reward, E[Y(t)]. is discussed in 1111. In practical terms the 

differences provide an estimate of the loss in reward due to various error types assuming that the 

jobs are initiated when the system is fully operational. As an example, in Figure 7, we find that 

that the SWE event degrades system effectiveness considerably more than the DASD event. This is 

because the reward rate of SWE error is lower than DASD error even though the error probability 

t 

Figure 7. Expected reward rate. E[X(t)] 

I 
1 

' SHARPE is a modeling tool . I t  provides several model typu ranging from reliability block diagrams to complex semi 
Markov models [ 171. 
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of DASD event is higher than of SWE event. 

7. Conclusion 

In this study, we have proposed a methodology to construct a model of resource usage. error 

and recovery in a computer system, using real data from a production system. The semi-Markov 

model obtained is capable of reflecting both the normal and error behavior: of our measured system. 

The errors are classified into various types. based on the components involved. Both hardware and 

software errors are considered, and the interaction between the system components (hardware and 

software) is reflected in a multiple error model. The proposed reward measure allows us to predict 

the performability of the system based on the service and error rates. It is suggested that other 

production systems be similarly analyzed so that a body of realistic data on computer error and 

recovery models is available. 
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